Recent studies suggest that Poly(ADP-ribose) polymerase 1 (PARP1) acts as an RNA-binding protein in a majority of renal diseases with tubular cell injury. However, detailed knowledge of RNA targets and the RNA-binding regions for PARP1 is unknown. Herein, mapping of iRIP-seq reads in HK-2 renal tubular epithelial cells showed a biased distribution at coding sequence (CDS) and intron regions that is specific to these cells. A total of 1708 differentially expressed genes were identified after PARP1 knockdown using RNA-seq. Furthermore, transcriptome analysis also showed that selective variable splicing was globally regulated by PARP1 in HK-2 cells. By comparison of PARP1 RNA-seq and iRIP-seq data, we found 68 overlapping genes that are enriched in 'extracellular matrix' pathway. Follow-up identification of their interactions may contribute vital insights into the regulatory role of PARP1 as an RNA-binding protein in HK-2 cells.
Keywords: HK-2 cells; PARP1; RNA-seq; extracellular matrix; iRIP-seq.
© 2021 Federation of European Biochemical Societies.