In Taiwan, colorectal cancer (CRC) is the second most common cancer and the cancer with the third highest mortality rate. This may be because of the difficulty of detecting the disease in the early stages, as well as the fact that colonoscopy, a typical method used in screening for CRC, causes discomfort to the recipient and is prone to technical interference. For the earlier detection of CRC, finding an easier screening method with a simpler collection procedure is essential. Thus, in the present study, plasma samples from patients with CRC were analyzed to determine the extent of methylation in SHISA3 DNA. Studies have suggested that SHISA3, a newly identified tumor suppressor, can regulate tumor growth, and that the inactivation of its DNA can be traced to epigenomic alterations in CRC. Another study reported the presence of hypermethylated SHISA3 DNA in CRC biopsy specimens. In the present study, the plasma of 30 patients with CRC and nine healthy controls was collected and analyzed for the concentration of cell-free DNA through bisulfite sequencing. The methylation rates were determined. Our results have shown that an increasing amount of cell-free DNA in the group of CRC patient's plasma compared to the healthy group. Moreover, patients with later stages of CRC had higher concentrations of cell-free DNA. Notably, the methylation rate of SHISA3 was higher in the plasma of the CRC group than in that of the healthy group. The results indicated that the presence of tumor cells does not reduce the degree of SHISA3 DNA in the peripheral blood of patients with CRC. In other words, the hypermethylation of SHISA3, which inactivates the gene, is a potential cause of tumorigenesis. Furthermore, the methylation rate of SHISA3 DNA was higher in the plasma of patients with stage II CRC than in that of those with stage I CRC. In conclusion, the combination of conventional testing and screening for SHISA3 hypermethylation in plasma could improve the rate at which CRC is detected.
Keywords: Colorectal cancer; SHISA3; hypermethylation.