Background: As medical infrastructures are strained by SARS-CoV-2, rapid and accurate screening tools are essential. In portions of the world, reverse transcription polymerase chain reaction (RT-PCR) testing remains slow and in limited supply, and computed tomography is expensive, inefficient, and involves exposure to ionizing radiation. Multiple studies evaluating the efficiency of lung point-of-care ultrasound (POCUS) have been published recently, but include relatively small cohorts and often focus on characteristics associated with severe illness rather than screening efficacy. This study utilizes a retrospective cohort to evaluate the test characteristics (sensitivity, specificity, likelihood ratios, predictive values) of lung POCUS in the diagnosis of SARS-CoV-2, and to determine lung score cutoffs that maximize performance for use as a screening tool.
Results: Lung POCUS examinations had sensitivity 86%, specificity 71.6%, NPV 81.7%, and PPV 77.7%. The Lung Ultrasound Score had an area under the curve of 0.84 (95% CI 0.78, 0.90). When including only complete examinations visualizing 12 lung fields, lung POCUS had sensitivity 90.9% and specificity 75.6%, with NPV 87.2% and PPV 82.0% and an area under the curve of 0.89 (95% CI 0.83, 0.96). Lung POCUS was less accurate in patients with a history of interstitial lung disease, severe emphysema, and heart failure.
Conclusions: When applied in the appropriate patient population, lung POCUS is an inexpensive and reliable tool for rapid screening and diagnosis of SARS-CoV-2 in symptomatic patients with influenza-like illness. Adoption of lung POCUS screening for SARS-CoV-2 may identify patients who do not require additional testing and reduce the need for RT-PCR testing in resource-limited environments and during surge periods.
Keywords: COVID-19; Diagnosis; POCUS; RT-PCR; SARS-CoV-2; Triage; Ultrasound.