Molecular bases for the association of FHR-1 with atypical hemolytic uremic syndrome and other diseases

Blood. 2021 Jun 24;137(25):3484-3494. doi: 10.1182/blood.2020010069.

Abstract

Factor H (FH)-related proteins are a group of partly characterized complement proteins thought to promote complement activation by competing with FH in binding to surface-bound C3b. Among them, FH-related protein 1 (FHR-1) is remarkable because of its association with atypical hemolytic uremic syndrome (aHUS) and other important diseases. Using a combination of biochemical, immunological, nuclear magnetic resonance, and computational approaches, we characterized a series of FHR-1 mutants (including 2 associated with aHUS) and unraveled the molecular bases of the so-called deregulation activity of FHR-1. In contrast with FH, FHR-1 lacks the capacity to bind sialic acids, which prevents C3b-binding competition between FH and FHR-1 in host-cell surfaces. aHUS-associated FHR-1 mutants are pathogenic because they have acquired the capacity to bind sialic acids, which increases FHR-1 avidity for surface-bound C3-activated fragments and results in C3b-binding competition with FH. FHR-1 binds to native C3, in addition to C3b, iC3b, and C3dg. This unexpected finding suggests that the mechanism by which surface-bound FHR-1 promotes complement activation is the attraction of native C3 to the cell surface. Although C3b-binding competition with FH is limited to aHUS-associated mutants, all surface-bound FHR-1 promotes complement activation, which is delimited by the FHR-1/FH activity ratio. Our data indicate that FHR-1 deregulation activity is important to sustain complement activation and C3 deposition at complement-activating surfaces. They also support that abnormally elevated FHR-1/FH activity ratios would perpetuate pathological complement dysregulation at complement-activating surfaces, which may explain the association of FHR-1 quantitative variations with diseases.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Atypical Hemolytic Uremic Syndrome*
  • Blood Proteins / chemistry*
  • Blood Proteins / genetics
  • Blood Proteins / metabolism
  • Complement C3 / chemistry*
  • Complement C3 / genetics
  • Complement C3 / metabolism
  • Female
  • Humans
  • Male
  • Mice
  • Mice, Knockout
  • Mutation*
  • Protein Binding

Substances

  • Blood Proteins
  • Complement C3
  • factor H-related protein 1