Monoclonal antibody (mAb) therapies are rapidly growing for the treatment of various diseases like cancer and autoimmune disorders. Many mAb drug products are sold as prefilled syringes and vials with liquid formulations. Typically, the walls of prefilled syringes are coated with silicone oil to lubricate the surfaces during use. MAbs are surface-active and adsorb to these silicone oil-solution interfaces, which is a potential source of aggregation. We studied formulations containing two different antibodies, mAb1 and mAb2, where mAb1 aggregated more when agitated in the presence of an oil-water interface. This directly correlated with differences in surface activity of the mAbs, studied with interfacial tension, surface mass adsorption, and interfacial rheology. The difference in interfacial properties between the mAbs was further reinforced in the coalescence behavior of oil droplets laden with mAbs. We also looked at the efficacy of surfactants, typically added to stabilize mAb formulations, in lowering adsorption and aggregation of mAbs at oil-water interfaces. We showed the differences between poloxamer-188 and polysorbate-20 in competing with mAbs for adsorption to interfaces and in lowering particulate and overall aggregation. Our results establish a direct correspondence between the adsorption of mAbs at oil-water interfaces and aggregation and the effect of surfactants in lowering aggregation by competitively adsorbing to these interfaces.
Keywords: aggregation; formulation stability; monoclonal antibody; rheology; silicone oil; surface adsorption; surfactants.