The strong desire for a circular economy makes obtaining fuels and chemicals via plastic degradation an important research topic in the 21st century. Here, the first example of the H2 -free polyethylene terephthalate (PET) conversion to BTX (benzene, toluene and xylene) was achieved by unlocking hidden hydrogen in the ethylene glycol part over Ru/Nb2 O5 catalyst. Among the whole process (hydrolysis, reforming and hydrogenolysis/decarboxylation), the parallel hydrogenolysis and decarboxylation were competing and the rate-determining step. Ru/Nb2 O5 exhibited superior hydrogenolysis and poorer decarboxylation performance in direct comparison with Ru/NiAl2 O4 , accordingly contributing to the distinct selectivity to alkyl aromatics among BTX. Ru species on Nb2 O5 , unlike those on NiAl2 O4 , showed more Ruδ+ species owing to the strong interaction between Ru and Nb2 O5 , restricting the undesired decarboxylation. Along with NbOx species for C-O bond activation, excellent reactivity towards the H2 -free conversion of PET back to BTX with alkyl aromatics as dominant species was achieved. This H2 -free system was also capable of converting common real PET plastics back to BTX, adding new options in the circular economy of PET.
© 2021 Wiley-VCH GmbH.