Complex relationships between growth hormone (GH) signaling and mammalian aging continue to attract attention of many investigators. Recent results include evidence that the impact of GH on genome maintenance (DNA damage and repair) is drastically different in normal as compared to cancer cells, consistent with GH promoting aging and cancer progression. Impact of GH on DNA methylation was studied as a possible mechanism linking actions of GH during early life to the trajectory of aging. Animals with reduced or enhanced GH signaling and novel animals with adipocyte-specific deletion of GH receptors were used to elucidate the effects of GH on white and brown adipose tissue, including the impact of this hormone on lipolysis, fibrosis, and thermogenesis. Effects of GH on adipose tissue related to lipid and energy metabolism emerge as mechanistic links between GH, healthspan, and lifespan. Treatment of healthy men with a combination of GH, dehydroepiandrosterone, and metformin was reported to restore thymus function and reduce epigenetic age. Studies of human subjects with deficiency of GH or GH receptors and studies of mice with the same endocrine syndromes identified several phenotypic changes related (positively or negatively) to the previously reported predisposition to healthy aging. Results of these and other recent studies advance present understanding of the mechanisms by which GH influences aging and longevity and of the trade-offs involved.
Keywords: Aging; DNA methylation; Growth hormone; Healthy aging; Longevity.
Copyright © 2021 Korean Society for Sexual Medicine and Andrology.