Phospholipids are important components of biomembrane and lipoproteins. Phospholipids can be oxidized by free radicals/nonradicals and enzymes to form oxidized phospholipids (OxPLs), which can lead to further generation of oxidation products with different biological activities. Clinical evidence shows that OxPLs are constantly generated and transformed during the pathogenesis of atherosclerosis and accumulated at the lesion sites. OxPLs are highly heterogeneous mixtures that can influence the progress of atherosclerosis through a variety of related receptors or signaling pathways. This review summarizes the process of phospholipid oxidation, the related products, the interaction of OxPLs with endothelial cells, monocytes/macrophages, smooth muscle cells, platelets and lipoproteins involved in the pathological process of atherosclerosis, and the progress of the researches using OxPLs as a target to inhibit atherosclerosis in recent years.