Caveolae are abundant plasma membrane pits formed by the coordinated action of peripheral and integral membrane proteins and membrane lipids. Here, we discuss recent studies that are starting to provide a glimpse of how filamentous cavin proteins, membrane-embedded caveolin proteins, and specific plasma membrane lipids are brought together to make the unique caveola surface domain. Protein assembly involves multiple low-affinity interactions that are dependent on 'fuzzy' charge-dependent interactions mediated in part by disordered cavin and caveolin domains. We propose that cavins help generate a lipid domain conducive to full insertion of caveolin into the bilayer to promote caveola formation. The synergistic assembly of these dynamic protein complexes supports the formation of a metastable membrane domain that can be readily disassembled both in response to cellular stress and during endocytic trafficking. We present a mechanistic model for generation of caveolae based on these new insights.
Keywords: Caveolae; Caveolin; Cavin; Fuzzy interaction; Membrane lipids.
Copyright © 2021 Elsevier Ltd. All rights reserved.