High-throughput T-cell receptor repertoire sequencing constitutes a powerful tool to study T cell responses at the clonal level. However, it does not give information on the functional phenotype of the responding clones and lacks a statistical framework for quantitative evaluation. To overcome this, we combined datasets from different experiments, all starting from the same blood samples. We used a novel, sensitive, UMI-based protocol to perform repertoire analysis on experimental replicates. Applying established bioinformatic routines for transcriptomic expression analysis we explored the dynamics of antigen-induced clonal expansion after in vitro stimulation, identified antigen-responsive clones, and confirmed their activation status using the expression of activation markers upon antigen re-challenge. We demonstrate that the addition of IL-4 after antigen stimulation drives the expansion of T cell clones encoding unique receptor sequences. We show that our approach represents a scalable, high-throughput immunological tool, which can be used to identify and characterize antigen-responsive T cells at clonal level.
Keywords: T cell responses; T-cell receptor; adaptive immune receptor repertoire; bioinformatics; immunoinformatics; next generation sequencing.
Copyright © 2021 Pollastro, de Bourayne, Balzaretti, Jongejan, van Schaik, Niewold, van Kampen, Maillère and de Vries.