Despite the introduction of public health measures and spike protein-based vaccines to mitigate the COVID-19 pandemic, SARS-CoV-2 infections and deaths continue to rise. Previously, we used a structural design approach to develop picomolar range miniproteins targeting the SARS-CoV-2 receptor binding domain. Here, we investigated the capacity of modified versions of one lead binder, LCB1, to protect against SARS-CoV-2-mediated lung disease in human ACE2-expressing transgenic mice. Systemic administration of LCB1-Fc reduced viral burden, diminished immune cell infiltration and inflammation, and completely prevented lung disease and pathology. A single intranasal dose of LCB1v1.3 reduced SARS-CoV-2 infection in the lung even when given as many as five days before or two days after virus inoculation. Importantly, LCB1v1.3 protected in vivo against a historical strain (WA1/2020), an emerging B.1.1.7 strain, and a strain encoding key E484K and N501Y spike protein substitutions. These data support development of LCB1v1.3 for prevention or treatment of SARS-CoV-2 infection.