MED1 (mediator subunit 1) co-amplifies with HER2, but its role in HER2-driven mammary tumorigenesis is still unknown. Here, we generate MED1 mammary-specific overexpression mice and cross them with mouse mammary tumor virus (MMTV)-HER2 mice. We observe significantly promoted onset, growth, metastasis, and multiplicity of HER2 tumors by MED1 overexpression. Further studies reveal critical roles for MED1 in epithelial-mesenchymal transition, cancer stem cell formation, and response to anti-HER2 therapy. Mechanistically, RNA sequencing (RNA-seq) transcriptome analyses and clinical sample correlation studies identify Jab1, a component of the COP9 signalosome complex, as the key direct target gene of MED1 contributing to these processes. Further studies reveal that Jab1 can also reciprocally regulate the stability and transcriptional activity of MED1. Together, our findings support a functional cooperation between these co-amplified genes in HER2+ mammary tumorigenesis and their potential usage as therapeutic targets for the treatment of HER2+ breast cancers.
Keywords: HER2; Jab1; MED1; cancer stem cell; therapeutic resistance; tumor metastasis.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.