Aims: Blastocyst implantation is mainly depended on the adhesion between cells and cell matrix. Endometrial adhesion plays an important role in establishing embryo implantation, but the underlying mechanisms are remains unclear. Talin1 is a local adhesion complex protein that is necessary for cell adhesion and movement. However, the role and mechanisms of Talin1 in embryo implantation are still unclear.
Main methods: The expression of Talin1 and Integrin αvβ3 was measured in the receptive endometrium from the RIF (Recurrent implantation failure) cohort and NC (normal fertile control group) cohort. A JEG-3 trophoblast and endometrial epithelial cell adhesion model and pregnant mouse model were established. The molecular mechanism of Talin1-mediated cell adhesion was explored by RNA sequencing, RT-qPCR, as well as western blotting assays.
Key findings: Talin1 enhances endometrial cell adhesion by regulating the Ras signaling pathway, and ultimately facilitates embryo implantation.
Significance: This study revealed the molecular mechanisms of regarding the pathogenesis of RIF caused by endometrial receptivity insufficiency. Further pharmacological research on the Ras signaling pathway would be valuable and might provide new therapeutic targets for RIF patients.
Keywords: Cell adhesion; Endometrial receptivity; RAS signal pathway; Recurrent implantation failure; Talin1.
Copyright © 2021 Elsevier Inc. All rights reserved.