The T-cell immunoglobulin and mucin domain containing molecule 3 (TIM-3), a crucial immune regulatory molecule, is an emerging immune checkpoint target for cancer therapy. Our study aimed to investigate the association between TIM-3 polymorphisms (rs10053538 C > A, rs10515746 C > A, and rs1036199 A > C) and the susceptibility and prognosis of esophageal squamous cell carcinoma (ESCC). We further detect the effects of polymorphisms on TIM-3 expression. Two independent case-control sets (population-based and hospital-based sets) were performed in total 994 ESCC patients and 998 controls. TIM-3 polymorphisms were genotyped by polymerase chain reaction-ligase detection reaction (PCR). Survival data were available for 198 patients who received platinum-based chemotherapy after surgery. The regulation on TIM-3 expression by the polymorphisms was investigated in 35 patients using real-time quantitative PCR. The association between mRNA level of TIM-3 and survival was detected by using Kaplan-Meier plotter database. We found that for rs10053538 C > A polymorphisms, A allele was associated with significant increased risk of ESCC (odds ratios [OR] = 1.34, 95%CI = 1.05-1.72), and CA/AA genotypes enhanced susceptibility to ESCC for smokers (adjusted OR = 1.61, 95%CI = 1.00-2.59). The patients with AA genotypes had significantly poor prognosis (adjusted HR = 4.98, 95%CI = 1.14-21.71). The patients carrying CA/AA genotypes had significantly higher mRNA levels of TIM-3 than those carrying the CC genotype. Furthermore, high mRNA level of TIM-3 had a shorter overall survival in patients (HR = 2.56, 95%CI = 1.04-6.28). For rs10515746 C > A and rs1036199 A > C polymorphisms, there were no statistical correlation with the progression of ESCC. These data demonstrate that rs10053538 C > A polymorphisms may be associated with the susceptibility and prognosis of ESCC patients through regulating expression of TIM-3.
Keywords: TIM-3; esophageal squamous cell carcinoma; gene expression; polymorphisms; prognosis; risk.
© 2021 Environmental Mutagen Society.