Aims: Beat-to-beat variability in cycle length is well-known in atrial fibrillation (Afib); whether this also translates to variability in annulus size remains unknown. Defining annulus maximal size in Afib is critical for accurate selection of percutaneous devices given the frequent association with mitral and tricuspid valve diseases.
Methods and results: Images were obtained from 170 patients undergoing 3D echocardiography [100 (50 sinus rhythm (SR) and 50 Afib) for mitral annulus (MA) and 70 (35 SR and 35 Afib) for tricuspid annulus (TA)]. Images were analysed for differences in annular dynamics with a commercially available software. Number of cardiac cycles analysed was 567 in mitral valve and 346 in tricuspid valve. Median absolute difference in maximal MA area over four to six cycles was 1.8 cm2 (range 0.5-5.2 cm2) in Afib vs. 0.8 cm2 (range 0.1-2.9 cm2) in SR, P < 0.001. Maximal MA area was observed within 30-70% of the R-R interval in 81% of cardiac cycles in SR and in 73% of cycles in Afib. Median absolute difference in maximal TA area over four to six cycles was 1.4 cm2 (range 0.5-3.6 cm2) in Afib vs. 0.7 cm2 (range 0.3-1.7 cm2) in SR, P < 0.001. Maximal TA area was observed within 60-100% of the R-R interval in 81% of cardiac cycles in SR, but only in 49% of cycles in Afib.
Conclusion: MA and TA reach maximal size within a broad time interval centred around end-systole and end-diastole, respectively, with significant beat-to-beat variability. Afib leads to a larger beat-to-beat variability in both timing of occurrence and values of annulus size than in SR.
Keywords: atrial fibrillation; beat-to-beat variability; mitral annulus; percutaneous interventions; three-dimensional echocardiography; tricuspid annulus.
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2021. For permissions, please email: [email protected].