During meat processing, two typical advanced glycation end products (AGEs), Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL), are generated by free radical induction. However, the impact of peroxyl radicals on myofibrillar proteins (MPs) glycosylation and CML and CEL formation is scarcely reported. In this study, two peroxyl radicals called ROO· and LOO· derived from AAPH (2,2'-azobis (2-methylpropionamidine) dihydrochloride) and linoleic acid were exposed prior to the Maillard reaction (glucosamine incubation at 37 °C for 24 h). Levels of AGEs (CML/CEL), protein oxidation (sulfhydryl/carbonyl), free amino group, surface hydrophobicity, zeta potential, particle size, intrinsic fluorescence intensity and secondary structure were determined. Together with Pearson's correlation, the assumption that free radicals promote MPs oxidation and glycation, alter the aggregation behavior and structure modification, leading to AGEs promotion has been built. In addition, the effect of dose-dependency of peroxyl radical on AGEs has also been established with different effects of peroxyl radical induction.
Keywords: Glycosylation; Myofibrillar proteins; N(ε)-carboxyethyllysine; N(ε)-carboxymethyllysine; Peroxyl radical.
Copyright © 2021 Elsevier Ltd. All rights reserved.