We recently demonstrated a significant shortening of age-adapted telomere length (TL) in lymphocytes of polychlorinated biphenyls (PCB)-exposed individuals. Here, we analyzed TL in individuals of the same PCB-exposed cohort during a 6-year follow-up period, investigating the change in TL between the first and second measurement as a function of time, concentration of PCBs and cytomegalovirus (CMV) infection. The age-adjusted TL of lymphocytes within the cohort of PCB-exposed individuals recovered from a first assessment in 2011 to a second assessment in 2017. Remarkably, if the concentration of lower chlorinated PCBs (LC PCBs) in 2011 was high (≥ 0.055 µg/L), the TL of CMV seropositive individuals remained significantly shortened both compared to age-adjusted controls as well as intra individually. This was confirmed by analysis of covariance as well as by multivariate linear mixed effects models. Since telomeres are responsive to various stress response pathways, including viral infection, we conclude that PCBs could contribute to immune senescence-like phenotypes associated with CMV infections and exacerbate negative aspects associated with the aging of the immune system.