Unknown chromatographic peaks, potential impurities, were observed in a series of related compounds. This led to the identification and characterization of tautomeric equilibria. Structural elucidation was required to understand the potential impurity profile, thus impacting method development for quality control. In this work, characterization of the chemical structures, AZ13581258 and AZD5718, and equilibria of the tautomeric forms was performed using a range of advanced analytical techniques such as preparative chromatography, nuclear magnetic resonance (NMR), chromatographic detection by mass spectrometry (MS), MSMS, and ultraviolet spectroscopy (UV). Predictions using density functional theory (DFT) further explains and confirms the tautomer equilibria through predictions of reaction barrier energies, UV-spectra and NMR data. These investigations led to fully understand the impurity profile and to the development of a quality control method for AZD5718 drug substance and drug product. In conclusion, ring-chain tautomeric structures are predominately formed under acidic conditions, and the additional peaks observed in LC during organic impurity determination were found to originate from ring-chain closed tautomers in equilibria with the parent open form compound. Hence, the closed and open tautomer forms should all be considered as the same compound.
Keywords: Absorption spectroscopy; Chromatography; Density functional theory; Mass spectrometry; Nuclear magnetic resonance; Tautomer equilibrium.
Copyright © 2021 Elsevier B.V. All rights reserved.