Among the hallmarks of major depressive disorders (MDD) are molecular, functional, and morphological impairments in the hippocampus. Recent studies suggested a key role for hippocampal GABAergic interneurons both in depression and in the response to its treatments. These interneurons highly express the chromatin-remodeler SMARCA3 which mediates the response to chronic antidepressants in an unknown mechanism. Using cell-type-specific molecular and physiological approaches, we report that SMARCA3 mediates the glutamatergic signaling in interneurons by repressing the expression of the neuronal protein, Neurensin-2. This vesicular protein associates with endosomes and postsynaptic proteins and is highly and selectively expressed in subpopulations of GABAergic interneurons. Upregulation of Neurensin-2 in the hippocampus either by stress, viral overexpression, or by SMARCA3 deletion, results in depressive-like behaviors. In contrast, the deletion of Neurensin-2 confers resilience to stress and induces AMPA receptor localization to synapses. This pathway which bidirectionally affects emotional behavior could be involved in neuropsychiatric disorders, and suggests novel therapeutic approaches.
© 2021. The Author(s).