Hydrothermally synthesized cubical zinc manganite nanostructure for electrocatalytic detection of sulfadiazine

Mikrochim Acta. 2021 Mar 19;188(4):131. doi: 10.1007/s00604-021-04768-3.

Abstract

An electrocatalyst modified electrode has been investigated to develop the rapid detection of antibiotics. The modified electrocatalyst was intended for the determination of sulfadiazine (SFZ) in biological fluids by electrochemical methods. Nanocube of zinc manganite (ZnMn2O4-NC) is prepared by hydrothermal method and a glassy carbon electrode (GCE) has been modified with the zinc manganite. The ZnMn2O4/GCE exhibit enhanced detection performances towards SFZ drug owing to their selective adsorption ability and the combination of electrostatic attraction of nanocube with SFZ. The modified electrocatalyst shows excellent electrocatalytic interactions with antibiotic drug. Besides, the modified sensors exhibit nanomolar detection limit (0.0021 μM) in 0.05 M phosphate buffer (pH = 7.0) using differential pulse voltammetric method. The working range of the modified electrode is 0.008-1264 μM, and the sensitivity of the SFZ sensor is 11.44 μA μM-1 cm-2. The modified sensor stability and reproducibility performances have been examined by electrochemical method. In addition, the obtained results of real sample analysis with different concentrations of SFZ in biological fluids are satisfactory with good recovery.

Keywords: Antibacterial; Antibiotic sulfa-drug; Biological analysis; Electrochemical detection; Voltammetry; Zinc manganite.

Publication types

  • Research Support, Non-U.S. Gov't