Superb reliability and biocompatibility equip aggregation-induced emission (AIE) dots with tremendous potential for fluorescence bioimaging. However, there is still a chronic lack of design instructions of excretable and bright AIE emitters. Here, a kind of PEGylated AIE (OTPA-BBT) dots with strong absorption and extremely high second near-infrared region (NIR-II) PLQY of 13.6% is designed, and a long-aliphatic-chain design blueprint contributing to their excretion from an animal's body is proposed. Assisted by the OTPA-BBT dots with bright fluorescence beyond 1100 nm and even 1500 nm (NIR-IIb), large-depth cerebral vasculature (beyond 600 µm) as well as real-time blood flow are monitored through a thinned skull, and noninvasive NIR-IIb imaging with rich high-spatial-frequency information gives a precise presentation of gastrointestinal tract in marmosets. Importantly, after intravenous or oral administration, the definite excretion of OTPA-BBT dots from the body is demonstrated, which provides influential evidence of biosafety.
Keywords: NIR-IIb; aggregation-induced emission dots; biologically excretable; fluorescence imaging; long aliphatic chain; non-human primates.
© 2021 Wiley-VCH GmbH.