Aqueous garlic extracts (AGE) and garlic allelochemical diallyl disulfide (DADS) have been recently reported to bear bioactive properties to stimulate plant growth and development and alter defense-related physiology. We, therefore, performed a bioassay to study these chemicals as possible biostimulants for defense against Verticillium dahliae in eggplant seedlings. AGE and DADS were applied as a foliar application to the eggplants and samples were collected before and after pathogen inoculation at various intervals to analyze the defense mechanism. The obtained data revealed that with the application of AGE and DADS, the seedlings showed responses including activation of antioxidant enzymes, an abundance of chlorophyll contents, alteration of photosynthesis system, and accumulation of plant hormones compared to the control plants. Furthermore, the microscopic analysis of the AGE or DADS treated plants showed high variability in pathogen density within the root crown at 28 days post-inoculation. The low abundance of reactive oxygen species was noticed in AGE or DADS treated plants, which indicates that the plants were able to successfully encounter pathogen attacks. The AGE and DADS treated plants exhibited a lower disease severity index (32.4% and 24.8% vs 87.1% in controls), indicating successful defense against Verticillium infection. Our results were therefore among the first to address the biostimulatory effects of AGE or DADS to induce resistance in eggplant seedlings against V. dahliae and may be used to establish preparation for garlic-derived bioactive compounds to improve growth and defense responses of eggplants under-protected horticultural situations such as glasshouse or plastic tunnels system.
Keywords: Defense priming; Eggplant; Garlic allelochemicals; Plant physiology; V. dahliae.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.