Background: Suaeda glauca (S. glauca) is a halophyte widely distributed in saline and sandy beaches, with strong saline-alkali tolerance. It is also admired as a landscape plant with high development prospects and scientific research value. The S. glauca chloroplast (cp) genome has recently been reported; however, the mitochondria (mt) genome is still unexplored.
Results: The mt genome of S. glauca were assembled based on the reads from Pacbio and Illumina sequencing platforms. The circular mt genome of S. glauca has a length of 474,330 bp. The base composition of the S. glauca mt genome showed A (28.00%), T (27.93%), C (21.62%), and G (22.45%). S. glauca mt genome contains 61 genes, including 27 protein-coding genes, 29 tRNA genes, and 5 rRNA genes. The sequence repeats, RNA editing, and gene migration from cp to mt were observed in S. glauca mt genome. Phylogenetic analysis based on the mt genomes of S. glauca and other 28 taxa reflects an exact evolutionary and taxonomic status of S. glauca. Furthermore, the investigation on mt genome characteristics, including genome size, GC contents, genome organization, and gene repeats of S. gulaca genome, was investigated compared to other land plants, indicating the variation of the mt genome in plants. However, the subsequently Ka/Ks analysis revealed that most of the protein-coding genes in mt genome had undergone negative selections, reflecting the importance of those genes in the mt genomes.
Conclusions: In this study, we reported the mt genome assembly and annotation of a halophytic model plant S. glauca. The subsequent analysis provided us a comprehensive understanding of the S. glauca mt genome, which might facilitate the research on the salt-tolerant plant species.
Keywords: Mitochondrial genome; Phylogenetic analysis; Repeats; Suaeda glauca.