Alcoholic liver disease (ALD) is the most common chronic liver disease worldwide. Currently, there is no definitive treatment for alcohol-induced liver injury (ALI). Inflammatory response and oxidative stress play a crucial role in ALI. Cyclooxygenase 2 (COX-2) can be induced by inflammation and it has been reported that the enhanced expression of COX-2 in alcoholic liver injury. Rutaecarpine (RUT) was extracted from evodia rutaecarpa. RUT has a wide range of pharmacological activities. In order to increase its anti-inflammatory activity, our group introduced sulfonyl group to synthesized the 3-[2-(trifluoromethoxy)benzenesulfonamide]-rutaecarpine (3-B-RUT). In this study, we explored the protective effect of 3-B-RUT on alcoholic liver injury in vivo and in vitro and preliminarily explore its mechanism. Mice ALI model was established according to the chronic-plus-binge ethanol model. Results showed that 3-B-RUT (20 μg/kg) attenuated alcohol-induced liver injury and suppressed liver inflammation and oxidative stress, and the effect was comparable to RUT (20 mg/kg). In vitro results are consistent with in vivo results. Mechanistically, the 3-B-RUT might suppress inflammatory response and oxidative stress by regulating activation of NF-κB/COX-2 pathway. In summary, 3-B-RUT, a derivative of RUT, may be a promising clinical candidate for ALI treatment.
Keywords: 3-[2-(trifluoromethoxy)benzenesulfonamide]-rutaecarpine (3-B-RUT); Alcohol-induced liver injury (ALI); Inflammation; Oxidative stress.
Copyright © 2021. Published by Elsevier B.V.