Objectives: To compare block sequential regularized expectation maximization (BSREM) and ordered subset expectation maximization (OSEM) for the detection of in-transit metastasis (ITM) of malignant melanoma in digital [18F]FDG PET/CT.
Methods: We retrospectively analyzed a cohort of 100 [18F]FDG PET/CT scans of melanoma patients with ITM, performed between May 2017 and January 2020. PET images were reconstructed with both OSEM and BSREM algorithms. SUVmax, target-to-background ratio (TBR), and metabolic tumor volume (MTV) were recorded for each ITM. Differences in PET parameters were analyzed with the Wilcoxon signed-rank test. Differences in image quality for different reconstructions were tested using the Man-Whitney U test.
Results: BSREM reconstruction led to the detection of 287 ITM (39% more than OSEM). PET parameters of ITM were significantly different between BSREM and OSEM reconstructions (p < 0.001). SUVmax and TBR were higher (76.5% and 77.7%, respectively) and MTV lower (49.5%) on BSREM. ITM missed with OSEM had significantly lower SUVmax (mean 2.03 vs. 3.84) and TBR (mean 1.18 vs. 2.22) and higher MTV (mean 2.92 vs. 1.01) on OSEM compared to BSREM (all p < 0.001).
Conclusions: BSREM detects significantly more ITM than OSEM, owing to higher SUVmax, higher TBR, and less blurring. BSREM is particularly helpful in small and less avid lesions, which are more often missed with OSEM.
Key points: • In melanoma patients, [18F]FDG PET/CT helps to detect in-transit metastases (ITM), and their detection is improved by using BSREM instead of OSEM reconstruction. • BSREM is particularly useful in small lesions.
Keywords: Algorithms; Fluorodeoxyglucose F18; Melanoma; Positron Emission Tomography / Computed Tomography; Skin neoplasms.
© 2021. The Author(s).