The deteriorating effects of Lead (Pb) on central nervous system (CNS) such as cerebellum has been demonstrated in previous studies. Glycoconjugates with the important role in CNS development may be affected by Pb-exposure. Utilization of antioxidant agents and herbal plants has attracted a great deal of attention on attenuating neurotoxicants-induced damage. Thus, in this study the neuroprotective effects of vitamin C and garlic on content of glycoconjugates of cerebellar cortex in Pb-exposed animals were investigated. Wistar pregnant rats were divided into: control (C), Pb-exposed (Pb) (1500 ppm lead acetate in drinking water), Pb plus vitamin C (Pb + Vit C) (500 mg/kg) intraperitoneally, Pb plus garlic (Pb + G) (1 mL /100 g body weight fresh garlic juice via gavage), Pb plus vitamin C and garlic (Pb + Vit C + G), and sham groups (Sh). Finally, levels of Pb in blood were measured in both rats and offspring on postnatal day 50 (PND50). Also, the cerebellums were removed for measuring Pb-levels and performing lectin histochemistry. Blood and cerebellar Pb-levels were increased in Pb-exposed group compared to control group (P < 0.001), whereas they were decreased significantly in Pb + Vit C, Pb + G, and Pb + Vit C + G groups (P < 0.01). By using MPA, UEA-1, and WGA lectin histochemistry, Pb-exposed group showed weak staining intensity compared to other groups. Besides, significant decrease was observed in the density of lectin-positive neurons of Pb-exposed group compared to the control group (P < 0.001). Moreover, strong staining intensity and high lectin-positive neurons were found in Pb + Vit C, Pb + G and Pb + Vit C + G groups than Pb-exposed group (P < 0.001). The present study revealed that Pb-exposure can result in alteration in the cerebellar glycoconjugates contents and co-administration of vitamin C and garlic could attenuate the adverse effects of Pb. The findings of this study revealed the ameliorating effects of vitamin C and garlic against Pb, suggesting the potential use of vitamin C and garlic as preventive agents in Pb poisoning.
Keywords: Cerebellum; Garlic; Glycoconjugates; Lead; Lectin histochemistry; Neurotoxicity; Stereology; Vitamin C.
Copyright © 2021 Elsevier B.V. All rights reserved.