The complete amino acid sequence of a glutaminase-asparaginase from Acinetobacter glutaminasificans, for which a preliminary tertiary structure is available from crystallographic analysis, has been determined by automated Edman degradation of fragments produced by chemical and proteolytic cleavages. The protein consists of 331 amino acid residues and has a molecular weight of 35,500. The pattern of hydrophilic and hydrophobic regions is typical of a globular protein. A new crystal form of an Erwinia chrysanthemi 1125 asparaginase is reported. The space group is monoclinic C2, with unit cell parameters of: a = 107.8, b = 91.7, c = 129.2 A and beta = 91.7 degrees. A Vm of 2.25 A3/dalton was calculated for one tetramer of 35,100-dalton subunits per asymmetric unit. X-ray intensity data have been obtained to 2.2 A resolution. The point group symmetry of the Er. chrysanthemi tetramer is 222 from self-rotation function calculations. The relative orientations of an A. glutaminasificans glutaminase-asparaginase model and the Er. chrysanthemi asparaginase tetramer have been determined with the cross-rotation function, and translation function calculations have revealed a plausible location for the asparaginase tetramer in the crystal.