Fischer-Tropsch synthesis (FTS) is an effective route to produce olefins, gasoline, diesel, and oxygenates from syngas (CO + H2 ). However, it still remains a challenge for regulating the product distribution of FTS. Here, a series of Co/C sub-microreactors with precise designed nanoarchitectures are synthesized for selective syngas conversion. Through a combination of surface protection-assisted etching and following carbonization process, Co/C sub-microreactors with solid cube, double-shelled hollow box, and hollow box architectures, namely, Co/C-Cube, Co/C-DBox, Co/C-Box can be obtained. In FTS, comparing with solid Co/C-Cube, double-shelled hollow structured Co/C-DBox is inclined to grow long-chain hydrocarbon products, whereas hollow structured Co/C-Box avails the formation of short-chain hydrocarbon chemicals. Therefore, shape selective catalysis and controlled product distribution of FTS are realized by tuning the architectures of Co/C sub-microreactors. It is expected to fundamentally unravel the heterogeneous catalytic process via upfront designing and precisely regulating the architectures of micro/nanoreactors.
Keywords: Fischer-Tropsch synthesis; MOFs; fossil energy utilization; shape selective catalysis; sub-microreactors.
© 2021 Wiley-VCH GmbH.