Asymmetric Catalytic Approach to Multilayer 3D Chirality

Chemistry. 2021 May 26;27(30):8013-8020. doi: 10.1002/chem.202100700. Epub 2021 May 6.

Abstract

The first asymmetric catalytic approach to multilayer 3D chirality has been achieved by using Suzuki-Miyaura cross-couplings. New chiral catalysts were designed and screened under various catalytic systems that proved chiral amide-phosphines to be more efficient ligands than other candidates. The multilayer 3D framework was unambiguously determined by X-ray structural analysis showing a parallel pattern of three layers consisting of top, middle and bottom aromatic rings. The X-ray structure of a catalyst complex, dichloride complex of Pd-phosphine amide, was obtained revealing an interesting asymmetric environment nearby the Pd metal center. Three rings of multilayer 3D products can be readily changed by varying aromatic ring-anchored starting materials. The resulting multilayer products displayed strong luminescence under UV irradiation and strong aggregation-induced emission (AIE). In the future, this work would benefit not only the field of asymmetric synthesis but also materials science, in particular polarized organic electronics, optoelectronics and photovoltaics.

Keywords: Suzuki-Miyaura cross-coupling; aggregation-induced emission; chirality; multilayer organic frameworks.