Highly Flexible and Tailorable Cobalt-Doped Cross-Linked Polyacrylamide-Based Electrolytes for Use in High-Performance Supercapacitors

Chem Asian J. 2021 Jun 1;16(11):1438-1444. doi: 10.1002/asia.202100276. Epub 2021 Apr 29.

Abstract

A novel hydrogel polymer electrolyte was prepared by incorporation of 1,4-butanediol diglycidyl ether (BG) to cross-linked polyacrylamide (PAM). The electrolyte (PAMBG) was modified with cobalt (II) sulfate with various doping ratios (PAMBGCoX) to increase the capacitance by increasing faradaic reactions. The supercapacitor device assembly was performed by using active carbon (AC) electrodes and hydrogel polymer electrolytes. The specific capacitance of the PAMBGCo5 device indicated 130 F g-1 , which is at least a seven-fold improvement due to the insertion of Co as a redox component. The electrolyte device, PAMBGCo5, displays superior performance having an energy density of 38 Wh kg-1 at a power density of 500 W kg-1 . Additionally, with the same hydrogel, the device performed 10,000 galvanostatic charge-discharge cycles via retaining 91% of the initial capacitance. A cost-effective electrolyte, PAMBGCo5, was tested in a carbon-based supercapacitor under bent and twisted conditions at various angles, confirming the robustness of the device.

Keywords: BG; PAM; Redox-active electrolyte; cross-linked polymer; supercapacitor.