The energy and spatial distributions of vortex bound state in superconductors carry important information about superconducting pairing and the electronic structure. Although discrete vortex states, and sometimes a zero energy mode, had been observed in several iron-based superconductors, their spatial properties are rarely explored. In this study, we used low-temperature scanning tunneling microscopy to measure the vortex state of (Li,Fe)OHFeSe with high spatial resolution. We found that the nonzero energy states display clear spatial oscillations with a period corresponding to bulk Fermi wavelength; while in contrast, the zero energy mode does not show such oscillation, which suggests its distinct electronic origin. Furthermore, the oscillations of positive and negative energy states near E_{F} are found to be clearly out of phase. Based on a two-band model calculation, we show that our observation is more consistent with an s_{++} wave pairing in the bulk of (Li, Fe)OHFeSe, and superconducting topological states on the surface.