Background: A common genetic mutation that causes Parkinson's disease (PD) is the G2019S LRRK2 mutation. A precision medicine approach that selectively blocks only excess kinase activity of the mutant allele could yield a safe and effective treatment for G2019S LRRK2 PD.
Objective: To determine the activity of a G2019S mutant selective leucine-rich repeat kinase 2 (LRRK2) kinase inhibitor as compared to a nonselective inhibitor in blood of subjects with genetic and idiopathic PD on two LRRK2 biomarkers, pSer935 LRRK2 and pThr73 Rab10.
Methods: Blood was collected from 13 subjects with or without a G2019S LRRK2 mutation with PD and one healthy control. Peripheral blood mononuclear cells were treated ex vivo with a novel G2019S LRRK2 inhibitor (EB-42168) or the nonselective inhibitor MLi-2. Quantitative western immunoblot analyses were performed.
Results: EB-42168 was 100 times more selective for G2019S LRRK2 when compared to wild-type (WT) LRRK2. Concentrations that inhibited phosphorylation of pSer935 LRRK2 by 90% in homozygous G2019S LRRK2 patients, inhibited pSer935 LRRK2 by 36% in heterozygous patients, and by only 5% in patients carrying only the WT allele. Similar selectivity was seen for pThr73 Rab10. MLi-2 showed an equivalent level of inhibition across all genotypes.
Conclusions: These findings demonstrate that EB-42168, a G2019S LRRK2 selective inhibitor, lowers mutant G2019S LRRK2 phosphorylated biomarkers while simultaneously sparing WT LRRK2. Selective targeting of G2019S LRRK2 with a small molecule lays the foundation for a precision medicine treatment of G2019S LRRK2 PD. © 2021 ESCAPE Bio, Inc. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Keywords: G2019S LRRK2; Parkinson's disease; biomarker; peripheral blood mononuclear cells; pharmacodynamic.
© 2021 ESCAPE Bio, Inc. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.