Ethnopharmacological relevance: Motion sickness is a multi-system syndrome caused by abnormal spatial environmental sensory conflicts. Tianxiang Capsule (TXC) is a traditional Chinese medicine (TCM) formula for the prevention and treatment of motion sickness for years. However, the main active components of TXC and mechanism of its therapeutic effects on motion sickness are still unclear.
Aim of the study: The purpose of this work is to investigate the mechanism of TXC in preventing motion sickness based on serum metabolomics and network pharmacology. On the basis of the clear validation of the anti-motion sickness effect of TXC, we used the strategy of combined GC-MS metabolomics and network pharmacology to screen 60 differential metabolites regulated by TXC.
Materials and methods: The rat models of motion sickness were stimulated by biaxial rotational acceleration, spontaneous activity was used to evaluate the efficacy of TXC on motion sickness. Serum metabolomics-based analysis was conducted to screen the differential metabolites related to motion sickness. Then, network pharmacology analysis was used to integrate the information of differential metabolites with target proteins and chemical components, and the "components-target protein-metabolite related protein-metabolite" network was constructed to explore the mechanism of the protective effect of TXC against motion sickness.
Results: The results of network integration analysis showed that the 50 TXC potential active ingredients mediated the differential expression of 49 metabolic biomarkers by targeting 25 target protein and regulated arachidonic acid metabolism, calcium signaling pathways, etc. In addition, we found that TXC can promote the secretion of insulin mediated by arachidonic acid pathway metabolites, regulate the levels of adrenaline and leptin, maintain blood glucose balance, and achieve the therapeutic effect of motion sickness.
Conclusions: Our results indicated that the arachidonic acid metabolic pathway and related targets are the key ways for TXC to exert its efficacy, and its target protein and anti-motion sickness mechanism deserve further study. Our work proved that the integrated strategy of metabolomics and network pharmacology can well explain the "multi-component - multi-target" mechanism of complex TCM in vivo, which is a practical approach for the study of TCM formula.
Keywords: Metabolomics; Motion sickness; Network pharmacology; Tianxiang capsule.
Copyright © 2021 Elsevier B.V. All rights reserved.