Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-2 (GLP-2) are gut hormones secreted postprandially. In healthy humans, both hormones decrease bone resorption accompanied by a rapid reduction in parathyroid hormone (PTH). The aim of this study was to investigate whether the changes in bone turnover after meal intake and after GIP- and GLP-2 injections, respectively, are mediated via a reduction in PTH secretion. This was tested in female patients with hypoparathyroidism given a standardized liquid mixed-meal test (n = 7) followed by a peptide injection test (n = 4) using a randomized crossover design. We observed that the meal- and GIP- but not the GLP-2-induced changes in bone turnover markers were preserved in the patients with hypoparathyroidism. To understand the underlying mechanisms, we examined the expression of the GIP receptor (GIPR) and the GLP-2 receptor (GLP-2R) in human osteoblasts and osteoclasts as well as in parathyroid tissue. The GIPR was expressed in both human osteoclasts and osteoblasts, whereas the GLP-2R was absent or only weakly expressed in osteoclasts. Furthermore, both GIPR and GLP-2R were expressed in parathyroid tissue. Our findings suggest that the GIP-induced effect on bone turnover may be mediated directly via GIPR expressed in osteoblasts and osteoclasts and that this may occur independent of PTH. In contrast, the effect of GLP-2 on bone turnover seems to depend on changes in PTH and may be mediated through GLP-2R in the parathyroid gland. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Keywords: BIOCHEMICAL MARKERS OF BONE TURNOVER; BONE TURNOVER; GIP; GLP-2; OSTEOBLASTS; OSTEOCLASTS.
© 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).