Inhibition of Staphylococcus aureus biofilm-forming functional amyloid by molecular tweezers

Cell Chem Biol. 2021 Sep 16;28(9):1310-1320.e5. doi: 10.1016/j.chembiol.2021.03.013. Epub 2021 Apr 13.

Abstract

Biofilms are rigid and largely impenetrable three-dimensional matrices constituting virulence determinants of various pathogenic bacteria. Here, we demonstrate that molecular tweezers, unique supramolecular artificial receptors, modulate biofilm formation of Staphylococcus aureus. In particular, the tweezers affect the structural and assembly properties of phenol-soluble modulin α1 (PSMα1), a biofilm-scaffolding functional amyloid peptide secreted by S. aureus. The data reveal that CLR01, a diphosphate tweezer, exhibits significant S. aureus biofilm inhibition and disrupts PSMα1 self-assembly and fibrillation, likely through inclusion of lysine side chains of the peptide. In comparison, different peptide binding occurs in the case of CLR05, a tweezer containing methylenecarboxylate units, which exhibits lower affinity for the lysine residues yet disrupts S. aureus biofilm more strongly than CLR01. Our study points to a possible role for molecular tweezers as potent biofilm inhibitors and antibacterial agents, particularly against untreatable biofilm-forming and PSM-producing bacteria, such as methicillin-resistant S. aureus.

Keywords: MRSA; PSMa1; Staphylococcus aureus; amyloid peptides; antibacterial; biofilm; functional amyloid; molecular tweezer; phenol-soluble modulins.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amyloid / antagonists & inhibitors*
  • Amyloid / metabolism
  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology*
  • Bacterial Toxins / antagonists & inhibitors*
  • Bacterial Toxins / metabolism
  • Biofilms / drug effects*
  • Hemolysin Proteins / antagonists & inhibitors*
  • Hemolysin Proteins / metabolism
  • Microbial Sensitivity Tests
  • Optical Tweezers
  • Staphylococcus aureus / drug effects*
  • Staphylococcus aureus / metabolism

Substances

  • Amyloid
  • Anti-Bacterial Agents
  • Bacterial Toxins
  • Hemolysin Proteins
  • staphylococcal alpha-toxin