Gamma-aminobutyric acid (GABA) is a well-known feed supplement for its capability of reducing the adverse effect of stress in chickens. Several studies using GABA supplementation as a mitigatory measure have been published. However, it remains difficult to draw a general conclusion since these studies have been done under different experimental conditions. Therefore, the objective of this study was to quantify the response (growth performances, immune responses, and blood biochemical parameters) of chickens to GABA supplementation under various stressful conditions through a meta-analysis approach. A total of 19 articles published from 2011 to 2020, including 30 treatments, were used. A mixed-model ANOVA was used to assess how the growth parameters varied based on the GABA mode of supplementation. Linear mixed models and general linear models were used to evaluate the effects of the GABA doses and the duration of the supplementation on the growth performances and the immune parameters. Results indicated that supplementation of GABA via drinking water was more effective than dietary supplementation for reducing the feed conversion ratio in heat-stressed birds (P < 0.01). In addition, an increase in the GABA doses resulted in an augmentation (P < 0.01) of the body weight gain while a longer duration of supplementation resulted in increasing (P<0.01) the feed intake. Furthermore, increasing the duration of the supplementation reduced the immunoglobulin (P < 0.0001) and bursa's relative weight (P < 0.0001), while increasing blood CD8+ count (P < 0.001) and spleen's relative weight (P < 0.0001). Finally, blood total protein content was increased (P < 0.0001) by a longer duration of supplementation. This study showed that the doses and the duration of the GABA supplementation can affect the growth performances of chickens under stressful conditions. However, the effect of GABA on immune responses and blood parameters is perceived with a relatively longer supplementation duration.
Keywords: Chicken; Gamma-aminobutyric acid; Growth; Heat stress; Immunity; Meta-analysis.
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.