Single-digit multiplications are thought to be associated with different levels of interference because they show different degrees of feature overlap (i.e., digits) with previously learnt problems. Recent behavioral and neuroimaging studies provided evidence for this interference effect and showed that individual differences in arithmetic fact retrieval are related to differences in sensitivity to interference (STI). The present study investigated whether and to what extent competence-related differences in STI and its neurophysiological correlates can be modulated by a multiplication facts training. Participants were 23 adults with high and 23 adults with low arithmetic competencies who underwent a five-day multiplication facts training in which they intensively practiced sets of low- and high-interfering multiplication problems. In a functional magnetic resonance imaging (fMRI) test session after the training, participants worked on a multiplication verification task that comprised trained and untrained problems. Analyses of the behavioral data revealed an interference effect only in the low competence group, which could be reduced but not resolved by training. On the neural level, competence-related differences in the interference effect were observed in the left supramarginal gyrus (SMG), showing activation differences between low- and high-interfering problems only in the low competent group. These findings support the idea that individuals' low arithmetic skills are related to the development of insufficient memory representations because of STI. Further, our results indicate that a short training by drill (i.e., learning associations between operands and solutions) was not fully effective to resolve existing interference effects in arithmetic fact knowledge.
Keywords: Arithmetic fact; Individual differences; Interference; Learning; Mathematics; Numerical cognition.
Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.