The impact of immune checkpoint therapy on the latent reservoir in HIV-infected individuals with cancer on antiretroviral therapy

AIDS. 2021 Aug 1;35(10):1631-1636. doi: 10.1097/QAD.0000000000002919.

Abstract

Objective: The aim of this study was to quantify HIV-specific immunological and virological changes in people with HIV (PWH) on antiretroviral therapy (ART) with malignancy who received immune checkpoint blockade (ICB).

Design: An observational cohort study.

Methods: Blood samples were collected before and after four cycles of ICB in HIV-positive adults on ART. Virological assessments performed on CD4+ T cells included cell-associated unspliced HIV RNA, cell-associated HIV DNA, Tat/rev-induced limiting dilution assay (TILDA) and plasma HIV RNA using a single copy assay (SCA). Flow cytometry was used to assess the frequency of precursor exhausted T cells (Tpex) and exhausted T cells (Tex), and Gag-specific CD4+ and CD8+ T cells positive for IFN-γ, TNF-α or CD107a by intracellular cytokine staining (ICS).

Results: Participant (P)1 received avelumab (anti-PD-L1) for Merkel cell carcinoma. P2 and P3 received ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1) for metastatic melanoma. An increase in CA-US RNA following each infusion was noted in all three participants. There were no consistent changes in HIV DNA or the proportion of cells with inducible MS HIV RNA. P2 demonstrated a striking increase in the frequency of gag-specific central and effector memory CD8+ T cells producing IFN-γ, TNF-α and CD107a following anti-PD1 and anti-CTLA-4. The frequency of CD8+ Tpex cells pre-ICB was also highest in this participant.

Conclusion: In three PWH with cancer on ART, we found that ICB activated latent HIV and enhanced HIV-specific T cell function but with considerable variation.

Publication types

  • Observational Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • CD4-Positive T-Lymphocytes
  • CD8-Positive T-Lymphocytes
  • HIV Infections* / drug therapy
  • HIV-1*
  • Humans
  • Neoplasms* / drug therapy
  • Virus Latency