Purpose: Malignancy prediction in indeterminate thyroid nodules is still challenging. We prospectively evaluated whether the combination of ultrasound (US) risk stratification and molecular testing improves the assessment of malignancy risk in Bethesda Category IV thyroid nodules.
Methods: Ninety-one consecutively diagnosed Bethesda Category IV thyroid nodules were prospectively evaluated before surgery by both ACR- and EU-TIRADS US risk-stratification systems and by a further US-guided fine-needle aspiration cytology (FNAC) for the following molecular testing: BRAFV600E, N-RAS codons 12/13, N-RAS codon 61, H-RAS codons 12/13, H-RAS codon 61, K-RAS codons 12/13, and K-RAS codon 61 point-mutations, as well as PAX8/PPARγ, RET/PC1, and RET/PTC 3 rearrangements.
Results: At histology, 37% of nodules were malignant. No significant association was found between malignancy and either EU- or ACR-TIRADS. In total, 58 somatic mutations were identified, including 3 BRAFV600E (5%), 5 N-RAS 12/13 (9%), 13 N-RAS 61 (22%), 7 H-RAS 12/13 (12%), 11 H-RAS 61 (19%), 6 K-RAS 12/13 (10%), 8 K-RAS 61 (14%) mutations and 2 RET/PTC1 (4%), 0 RET/PTC 3 (0%), 3 PAX8/PPARγ (5%) rearrangements. At least one somatic mutation was found in 28% and 44% of benign and malignant nodules, respectively, although malignancy was not statistically associated with the outcome of the mutational test. However, the combination of ACR-, but not EU-, TIRADS with the presence of at least one somatic mutation, was significantly associated with malignant histology (P = 0.03).
Conclusion: US risk stratification and FNAC molecular testing may synergistically contribute to improve malignancy risk estimate of Bethesda category IV thyroid nodules.
Keywords: Fine-needle aspiration; Markers; Molecular; Thyroid nodule; Ultrasound.
© 2021. The Author(s).