Dipyridyl-substituted thiosemicarbazone as a potent broad-spectrum inhibitor of metallo-β-lactamases

Bioorg Med Chem. 2021 May 15:38:116128. doi: 10.1016/j.bmc.2021.116128. Epub 2021 Apr 8.

Abstract

To combat the superbug infection caused by metallo-β-lactamases (MβLs), a dipyridyl-substituted thiosemicarbazone (DpC), was identified to be the broad-spectrum inhibitor of MβLs (NDM-1, VIM-2, IMP-1, ImiS, L1), with an IC50 value in the range of 0.021-1.08 µM. It reversibly and competitively inhibited NDM-1 with a Ki value of 10.2 nM. DpC showed broad-spectrum antibacterial effect on clinical isolate K. pneumonia, CRE, VRE, CRPA and MRSA, with MIC value ranged from 16 to 32 µg/mL, and exhibited synergistic antibacterial effect with meropenem on MβLs-producing bacteria, resulting in a 2-16-, 2-8-, and 8-fold reduction in MIC of meropenem against EC-MβLs, EC01-EC24, K. pneumonia, respectively. Moreover, mice experiments showed that DpC also had synergistic antibacterial action with meropenem. In this work, DpC was identified to be a potent scaffold for the development of broad-spectrum inhibitors of MβLs.

Keywords: Antibiotic resistance; Broad-spectrum inhibitor; Metallo-β-lactamases; Thiosemicarbazone.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / chemical synthesis
  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology*
  • Bacteria / drug effects*
  • Bacteria / enzymology
  • Dose-Response Relationship, Drug
  • Microbial Sensitivity Tests
  • Molecular Structure
  • Structure-Activity Relationship
  • Thiosemicarbazones / chemical synthesis
  • Thiosemicarbazones / chemistry
  • Thiosemicarbazones / pharmacology*
  • beta-Lactamase Inhibitors / chemical synthesis
  • beta-Lactamase Inhibitors / chemistry
  • beta-Lactamase Inhibitors / pharmacology*
  • beta-Lactamases / metabolism*

Substances

  • Anti-Bacterial Agents
  • Thiosemicarbazones
  • beta-Lactamase Inhibitors
  • beta-Lactamases