Two recent initiatives, the World Health Organization (WHO) Strategic Advisory Group on Malaria Eradication and the Lancet Commission on Malaria Eradication, have assessed the feasibility of achieving global malaria eradication and proposed strategies to achieve it. Both reports rely on a climate-driven model of malaria transmission to conclude that long-term trends in climate will assist eradication efforts overall and, consequently, neither prioritize strategies to manage the effects of climate variability and change on malaria programming. This review discusses the pathways via which climate affects malaria and reviews the suitability of climate-driven models of malaria transmission to inform long-term strategies such as an eradication programme. Climate can influence malaria directly, through transmission dynamics, or indirectly, through myriad pathways including the many socioeconomic factors that underpin malaria risk. These indirect effects are largely unpredictable and so are not included in climate-driven disease models. Such models have been effective at predicting transmission from weeks to months ahead. However, due to several well-documented limitations, climate projections cannot accurately predict the medium- or long-term effects of climate change on malaria, especially on local scales. Long-term climate trends are shifting disease patterns, but climate shocks (extreme weather and climate events) and variability from sub-seasonal to decadal timeframes have a much greater influence than trends and are also more easily integrated into control programmes. In light of these conclusions, a pragmatic approach is proposed to assessing and managing the effects of climate variability and change on long-term malaria risk and on programmes to control, eliminate and ultimately eradicate the disease. A range of practical measures are proposed to climate-proof a malaria eradication strategy, which can be implemented today and will ensure that climate variability and change do not derail progress towards eradication.
Keywords: Climate change; Climate variability; Disease modelling; Disease programming; Malaria eradication; Monitoring and evaluation; Policy.