Accurate predictions of druggability and bioactivities of compounds are desirable to reduce the high cost and time of drug discovery. After more than five decades of continuing developments, quantitative structure-activity relationship (QSAR) methods have been established as indispensable tools that facilitate fast, reliable and affordable assessments of physicochemical and biological properties of compounds in drug-discovery programs. Currently, there are mainly two types of QSAR methods, descriptor-based methods and graph-based methods. The former is developed based on predefined molecular descriptors, whereas the latter is developed based on simple atomic and bond information. In this study, we presented a simple but highly efficient modeling method by combining molecular graphs and molecular descriptors as the input of a modified graph neural network, called hyperbolic relational graph convolution network plus (HRGCN+). The evaluation results show that HRGCN+ achieves state-of-the-art performance on 11 drug-discovery-related datasets. We also explored the impact of the addition of traditional molecular descriptors on the predictions of graph-based methods, and found that the addition of molecular descriptors can indeed boost the predictive power of graph-based methods. The results also highlight the strong anti-noise capability of our method. In addition, our method provides a way to interpret models at both the atom and descriptor levels, which can help medicinal chemists extract hidden information from complex datasets. We also offer an HRGCN+'s online prediction service at https://quantum.tencent.com/hrgcn/.
Keywords: artificial intelligence; descriptor-based methods; graph-based methods; hyperbolic relational graph convolution network; machine learning; quantitative structure–activity relationship.
© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: [email protected].