During sepsis the normal induction of circulating insulin-like growth factor-I (IGF-I) by growth hormone (GH) action on liver is attenuated, a phenomenon called hepatic GH resistance. Hepatic GH resistance can be caused by cytokine-mediated activation of the NF-κB pathway which interferes with normal GH-signaling. The afferent and efferent fibers of the vagus nerve are integral to the cholinergic anti-inflammatory pathway (CAP) which attenuates hepatic TNFα production by activating the α7 nicotinic acetylcholine receptor (α7nAChR). We examined the effects of selective afferent vagotomy (SAV) and α7nAChR activation on sepsis-induced mortality, hepatic and systemic inflammation, the GH/IGF system and hepatic GH resistance using Sprague Dawley (SD) rats, C57BL/6 wild type (WT) mice, and α7nAChR knockout (KO) mice. Capsaicin was used to perform SAV and GTS-21 (α7nAChR agonist) was used to activate the α7nAChR. Sepsis-induced mortality, hepatic NF-κB activation, and plasma cytokine levels were increased in SAV rats and reduced in GTS-21-treated mice. The effects of sepsis on the GH/IGF-I system plasma IGF-I, IGF binding protein-1 (IGFBP-1), hepatic IGF-I, IGFBP-1, and GH receptor (GHR) mRNA and rhGH-responsiveness in mice were improved by GTS-21. Collectively these results confirm the protective effects of the anti-inflammatory CAP and α7nAChR activation in sepsis. They also provide evidence the CAP and α7nAChR activation could be used to attenuate hepatic GH resistance and anabolic failure in sepsis.
Copyright © 2021 by the Shock Society.