With the rapid development of artificial intelligence (AI) and machine learning (ML), as well as the arrival of the big data era, technological innovations have occurred in the field of cardiovascular medicine. First, the diagnosis of cardiovascular diseases (CVDs) is highly dependent on assistive examinations, the interpretation of which is time consuming and often limited by the knowledge level and clinical experience of doctors; however, AI could be used to automatically interpret the images obtained in auxiliary examinations. Second, some of the predictions of the incidence and prognosis of CVDs are limited in clinical practice by the use of traditional prediction models, but there may be occasions when AI-based prediction models perform well by using ML algorithms. Third, AI has been used to assist precise classification of CVDs by integrating a variety of medical data from patients, which helps better characterize the subgroups of heterogeneous diseases. To help clinicians better understand the applications of AI in CVDs, this review summarizes studies relating to AI-based diagnosis, prediction, and classification of CVDs. Finally, we discuss the challenges of applying AI to cardiovascular medicine.
Keywords: Artificial intelligence; Big data; Cardiovascular diseases; Machine learning; Precision medicine.