Effect of four ABCB1 genetic polymorphisms on the accumulation of darunavir in HEK293 recombinant cell lines

Sci Rep. 2021 Apr 26;11(1):9000. doi: 10.1038/s41598-021-88365-7.

Abstract

The intracellular penetration of darunavir, a second-generation HIV protease inhibitor, is limited by the activity of the efflux P-glycoprotein (ABCB1). ABCB1 expression and/or activity levels can vary between individuals due to genetic polymorphisms including the c.1199G>A, c.1236C>T, c.2677G>T and c.3435C>T variants, which could in part explain why the pharmacokinetics of darunavir are so variable from one individual to another. While a few clinical studies have failed to demonstrate an influence of these polymorphisms on darunavir pharmacokinetics, drug-drug interactions and methodological limitations may have prevented them from revealing the true influence of ABCB1 variants. In this work, we report on the intracellular accumulation of darunavir in recombinant HEK293 cell lines expressing wild-type ABCB1 or one of several variants: ABCB1 1199A, ABCB1 3435T, and ABCB1 1236T/2677T/3435T. We demonstrate that while ABCB1 expression limits intracellular accumulation of darunavir, there is no significant difference in efflux activity between cells expressing wild-type ABCB1 and those that express any of the studied variants.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B / genetics
  • ATP Binding Cassette Transporter, Subfamily B / metabolism
  • Darunavir* / pharmacokinetics
  • Darunavir* / pharmacology
  • HEK293 Cells
  • Humans
  • Polymorphism, Genetic*

Substances

  • ABCB1 protein, human
  • ATP Binding Cassette Transporter, Subfamily B
  • Darunavir