The Feasibility of 3D Intraoperative Navigation in Lateral Lumbar Interbody Fusion: Perioperative Outcomes, Accuracy of Cage Placement and Radiation Exposure

Global Spine J. 2023 Apr;13(3):737-744. doi: 10.1177/21925682211006700. Epub 2021 Apr 28.

Abstract

Study design: Retrospective cohort study.

Objectives: To evaluate perioperative outcomes, accuracy of cage placement and radiation exposure in lateral lumbar interbody fusion (LLIF) using 3D intraoperative navigation (ION), compared to conventional 2D fluoroscopy only.

Methods: The perioperative outcomes and accuracy of cage placement were examined in all patients who underwent LLIF using ION (ION group) or fluoroscopy only (non-ION group) by a single surgeon. The radiation exposure was examined in patients who underwent stand-alone LLIF.

Results: A total of 87 patients with 154 levels (ION 49 patients with 79 levels/ non-ION 38 patients with 75 levels) were included. There were no significant differences in operative time (ION 143.5 min vs. non-ION 126.0 min, P = .406), time from induction end to surgery start (ION 31.0 min vs. non-ION 31.0 min, P = .761), estimated blood loss (ION 37.5 ml vs. non-ION 50.0 ml, P = .351), perioperative complications (ION 16.3% vs. non-ION 7.9%, P = .335) and length of stay (ION 50.6 hours vs. non-ION 41.7 hours, P = .841). No significant difference was found in the accuracy of cage placement (P = .279). ION did not significantly increase total radiation dose (ION 51.0 mGy vs. non-ION 47.4 mGy, P = .237) and tended to reduce radiation dose during the procedure (ION 32.2 mGy vs. non-ION 47.4 mGy, P = .932).

Conclusions: The perioperative outcomes, accuracy of cage placement and radiation exposure in LLIF using ION were comparable to those using fluoroscopy only. The use of ION in LLIF was feasible, safe and accurate and may reduce radiation dose to the surgeon and surgical team.

Keywords: accuracy of cage placement; extreme lateral interbody fusion (XLIF); intraoperative navigation; lateral lumbar interbody fusion (LLIF); minimally invasive spine surgery (MIS); perioperative outcomes; radiation exposure; three-dimensional imaging.