Functional soil organic matter fraction in response to short-term tillage management under the double-cropping rice paddy field in southern of China

Environ Sci Pollut Res Int. 2021 Sep;28(35):48438-48449. doi: 10.1007/s11356-021-14173-1. Epub 2021 Apr 28.

Abstract

Soil organic matter (SOM) and its fraction play an important role in maintaining and improving soil fertility of paddy field. However, there is still limited information about how SOM fraction response to carbon (C) sequestration with different short-term tillage practices under the double-cropping rice paddy field in southern of China. Therefore, the effects of 5-year short-term tillage treatments on different SOM fractions (physically protected, physico-chemically protected, physico-biochemically protected, chemically protected, biochemically protected, and unprotected) under the double-cropping rice paddy field in southern of China were studied in this paper. The field experiment included four different tillage treatments: rotary tillage with crop residue removed as a control (RTO), conventional tillage with crop residue incorporation (CT), rotary tillage with crop residue incorporation (RT), and no-tillage with crop residue retention (NT). The results showed that soil unprotected (cPOM), biochemically (NH-dSilt), physically-biochemically (NH-μSilt), and chemically protected (H-dSilt) fractions with different tillage treatments were the mainly C storage fraction in paddy field. The soil organic carbon (SOC) content in unprotected (cPOM and fPOM), physically protected (iPOM), and physico-chemically protected (H-μClay) fractions with CT treatment was increased by 1.45, 2.13, 1.91, and 1.42 times higher than that of RTO treatment, respectively. The results showed that largest proportion of fraction to SOC content was biochemically protected, followed by unprotected and physically-biochemically protected, and physically protected was the lowest. These results indicated that soil physically protected, physically-chemically protected, and physically-biochemically protected fractions with CT and RT treatments were higher than that of NT and RTO treatments. In summary, it was a benefit practice for increasing SOM fraction under the double-cropping rice paddy field in southern of China by combined application of conventional tillage and rotary tillage with crop residue incorporation management.

Keywords: Paddy field; Physical and chemical fraction; Rice; Soil organic matter; Tillage.

MeSH terms

  • Agriculture
  • Carbon / analysis
  • China
  • Oryza*
  • Soil*

Substances

  • Soil
  • Carbon