Purpose: Ureteroscopy is an efficient endoscopic minimally invasive technique for the diagnosis and treatment of upper tract urothelial carcinoma. During ureteroscopy, the automatic segmentation of the hollow lumen is of primary importance, since it indicates the path that the endoscope should follow. In order to obtain an accurate segmentation of the hollow lumen, this paper presents an automatic method based on convolutional neural networks (CNNs).
Methods: The proposed method is based on an ensemble of 4 parallel CNNs to simultaneously process single and multi-frame information. Of these, two architectures are taken as core-models, namely U-Net based in residual blocks ([Formula: see text]) and Mask-RCNN ([Formula: see text]), which are fed with single still-frames I(t). The other two models ([Formula: see text], [Formula: see text]) are modifications of the former ones consisting on the addition of a stage which makes use of 3D convolutions to process temporal information. [Formula: see text], [Formula: see text] are fed with triplets of frames ([Formula: see text], I(t), [Formula: see text]) to produce the segmentation for I(t).
Results: The proposed method was evaluated using a custom dataset of 11 videos (2673 frames) which were collected and manually annotated from 6 patients. We obtain a Dice similarity coefficient of 0.80, outperforming previous state-of-the-art methods.
Conclusion: The obtained results show that spatial-temporal information can be effectively exploited by the ensemble model to improve hollow lumen segmentation in ureteroscopic images. The method is effective also in the presence of poor visibility, occasional bleeding, or specular reflections.
Keywords: Convolutional neural networks; Deep learning; Image segmentation; Upper tract urothelial carcinoma (UTUC); Ureteroscopy.