A preclinical study: correlation between PD-L1 PET imaging and the prediction of therapy efficacy of MC38 tumor with 68Ga-labeled PD-L1 targeted nanobody

Aging (Albany NY). 2021 Apr 27;13(9):13006-13022. doi: 10.18632/aging.202981. Epub 2021 Apr 27.

Abstract

Although immunotherapy has achieved great clinical success in clinical outcomes, especially the anti-PD-1 or anti-PD-L1 antibodies, not all patients respond to anti-PD-1 immunotherapy. It is urgently required for a clinical diagnosis to develop non-invasive imaging meditated strategy for assessing the expression level of PD-L1 in tumors. In this work, a 68Ga-labeled single-domain antibody tracer, 68Ga-NOTA-Nb109, was designed for specific and noninvasive imaging of PD-L1 expression in an MC38 tumor-bearing mouse model. Comprehensive studies including Positron Emission Tomography (PET), biodistribution, blocking studies, immunohistochemistry, and immunotherapy, have been performed in differences PD-L1 expression tumor-bearing models. These results revealed that 68Ga-NOTA-Nb109 specifically accumulated in the MC38-hPD-L1 tumor. The content of this nanobody in MC38 hPD-L1 tumor and MC38 Mixed tumor was 8.2 ± 1.3, 7.3 ± 1.2, 3.7 ± 1.5, 2.3 ± 1.2%ID/g and 7.5 ± 1.4, 3.6 ± 1.7, 1.7 ± 0.6, 1.2 ± 0.5%ID/g at 0.5, 1, 1.5, 2 hours post-injection, respectively. 68Ga-NOTA-Nb109 has the potential to further noninvasive PET imaging and therapy effectiveness assessments based on the PD-L1 status in tumors. To explore the possible synergistic effects of immunotherapy combined with chemotherapy, MC38 xenografts with different sensitivity to PD-L1 blockade were established. In addition, we found that PD-1 blockade also had efficacy on the PD-L1 knockout tumors. RT-PCR and immunofluorescence analysis were used to detect the expression of PD-L1. It was observed that both mouse and human PD-L1 expressed among three types of MC38 tumors. These results suggest that PD-L1 on tumor cells affect the efficacy, but it on host myeloid cells might be essential for checkpoint blockade. Moreover, anti-PD-1 treatment activates tumor-reactive CD103+ CD39+ CD8+T cells (TILs) in tumor microenvironment.

Keywords: MC38 tumor; immunotherapy; positron emission tomography (PET); programmed death-ligand 1 (PD-L1).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Combined Chemotherapy Protocols / pharmacology*
  • Antineoplastic Combined Chemotherapy Protocols / therapeutic use
  • B7-H1 Antigen / analysis*
  • B7-H1 Antigen / antagonists & inhibitors
  • B7-H1 Antigen / genetics
  • B7-H1 Antigen / metabolism
  • Cell Line, Tumor / transplantation
  • Disease Models, Animal
  • Drug Resistance, Neoplasm / drug effects
  • Drug Resistance, Neoplasm / immunology
  • Drug Screening Assays, Antitumor
  • Female
  • Gallium Radioisotopes / administration & dosage
  • Gallium Radioisotopes / pharmacology
  • Gallium Radioisotopes / therapeutic use
  • Gene Knockout Techniques
  • Humans
  • Mice
  • Mice, Transgenic
  • Molecular Imaging / methods*
  • Neoplasms / diagnosis
  • Neoplasms / drug therapy*
  • Neoplasms / immunology
  • Positron-Emission Tomography / methods
  • Prognosis
  • Programmed Cell Death 1 Receptor / antagonists & inhibitors
  • Programmed Cell Death 1 Receptor / genetics
  • Programmed Cell Death 1 Receptor / metabolism
  • Single-Chain Antibodies / pharmacology*
  • Single-Chain Antibodies / therapeutic use
  • Tissue Distribution
  • Tumor Microenvironment / drug effects
  • Tumor Microenvironment / immunology

Substances

  • B7-H1 Antigen
  • CD274 protein, human
  • Gallium Radioisotopes
  • PDCD1 protein, human
  • Programmed Cell Death 1 Receptor
  • Single-Chain Antibodies
  • Gallium-68