Hallucinations in Parkinson's disease (PD) are disturbing and frequent non-motor symptoms and constitute a major risk factor for psychosis and dementia. We report a robotics-based approach applying conflicting sensorimotor stimulation, enabling the induction of presence hallucinations (PHs) and the characterization of a subgroup of patients with PD with enhanced sensitivity for conflicting sensorimotor stimulation and robot-induced PH. We next identify the fronto-temporal network of PH by combining MR-compatible robotics (and sensorimotor stimulation in healthy participants) and lesion network mapping (neurological patients without PD). This PH-network was selectively disrupted in an additional and independent cohort of patients with PD, predicted the presence of symptomatic PH, and associated with cognitive decline. These robotics-neuroimaging findings extend existing sensorimotor hallucination models to PD and reveal the pathological cortical sensorimotor processes of PH in PD, potentially indicating a more severe form of PD that has been associated with psychosis and cognitive decline.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.